Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Intraband spectroscopy of excited quantum dot levels by measuring photoinduced currents

Identifieur interne : 000075 ( Russie/Analysis ); précédent : 000074; suivant : 000076

Intraband spectroscopy of excited quantum dot levels by measuring photoinduced currents

Auteurs : RBID : Pascal:11-0245273

Descripteurs français

English descriptors

Abstract

The development of semiconductor quantum dot (QD) devices particularly for the infrared requires information on their intraband energy levels. For most of the samples FTIR spectroscopy does not provide reliable results on intraband transitions in the mid-infrared due to very low absorption signals. In recent years photocurrent spectroscopy was demonstrated as an alternative method. In this paper we present a modified photocurrent method, which does not require complicated contact structures or contact layers. The samples are laterally contacted by simply soldering wires and are biased by several 10 V. The intraband resonances are monitored via current changes induced by optical excitation with intense picosecond mid-infrared laser pulses. Both bound to bound and bound to continuum transitions enhance the current. We present data taken on two highly n-doped GaAs/InAs QD samples with different doping concentration at 77 K and at room temperature. In this way, a nearly complete picture of intraband transitions between excited levels in the conduction band is obtained. The intraband spectra obtained with this technique nicely agree with calculated QD intraband levels.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0245273

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Intraband spectroscopy of excited quantum dot levels by measuring photoinduced currents</title>
<author>
<name sortKey="Eichenberg, B" uniqKey="Eichenberg B">B. Eichenberg</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Physikalisches Institut, Universität Bayreuth, Universitätsstrasse 30</s1>
<s2>95447 Bayreuth</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Franconie</region>
<settlement type="city">Bayreuth</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dobmann, S" uniqKey="Dobmann S">S. Dobmann</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Physikalisches Institut, Universität Bayreuth, Universitätsstrasse 30</s1>
<s2>95447 Bayreuth</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Franconie</region>
<settlement type="city">Bayreuth</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wunderlich, H" uniqKey="Wunderlich H">H. Wunderlich</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Physikalisches Institut, Universität Bayreuth, Universitätsstrasse 30</s1>
<s2>95447 Bayreuth</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Franconie</region>
<settlement type="city">Bayreuth</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Seilmeier, A" uniqKey="Seilmeier A">A. Seilmeier</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Physikalisches Institut, Universität Bayreuth, Universitätsstrasse 30</s1>
<s2>95447 Bayreuth</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Franconie</region>
<settlement type="city">Bayreuth</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vorobjev, L E" uniqKey="Vorobjev L">L. E. Vorobjev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>St. Petersburg State Polytechnic University</s1>
<s2>195251 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St. Petersburg State Polytechnic University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Firsov, D A" uniqKey="Firsov D">D. A. Firsov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>St. Petersburg State Polytechnic University</s1>
<s2>195251 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St. Petersburg State Polytechnic University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Panevin, V" uniqKey="Panevin V">V. Panevin</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>St. Petersburg State Polytechnic University</s1>
<s2>195251 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St. Petersburg State Polytechnic University</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tonkikh, A A" uniqKey="Tonkikh A">A. A. Tonkikh</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>St. Petersburg Academic University of RAS</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<wicri:noRegion>St. Petersburg Academic University of RAS</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0245273</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0245273 INIST</idno>
<idno type="RBID">Pascal:11-0245273</idno>
<idno type="wicri:Area/Main/Corpus">003114</idno>
<idno type="wicri:Area/Main/Repository">002B31</idno>
<idno type="wicri:Area/Russie/Extraction">000075</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1386-9477</idno>
<title level="j" type="abbreviated">Physica ( E) low-dimens. syst. nanostrut.</title>
<title level="j" type="main">Physica. E, low-dimentional systems and nanostructures</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Conduction bands</term>
<term>Continuum</term>
<term>Doping</term>
<term>Energy levels</term>
<term>Experimental design</term>
<term>Fourier transform spectroscopy</term>
<term>Gallium arsenides</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium arsenides</term>
<term>Intraband transitions</term>
<term>Laser pulse</term>
<term>Nanostructured materials</term>
<term>Nitrogen additions</term>
<term>Photoconductivity</term>
<term>Photocurrents</term>
<term>Quantum dot device</term>
<term>Quantum dots</term>
<term>Resonance</term>
<term>Semiconductor quantum dots</term>
<term>Soldered joints</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Point quantique</term>
<term>Nanomatériau</term>
<term>Point quantique semiconducteur</term>
<term>Niveau énergie</term>
<term>Spectrométrie transformée Fourier</term>
<term>Plan expérience</term>
<term>Transition intrabande</term>
<term>Courant photoélectrique</term>
<term>Photoconductivité</term>
<term>Assemblage brasage tendre</term>
<term>Résonance</term>
<term>Impulsion laser</term>
<term>Continuum</term>
<term>Addition azote</term>
<term>Arséniure de gallium</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Arséniure d'indium</term>
<term>Dopage</term>
<term>Bande conduction</term>
<term>8107T</term>
<term>8535B</term>
<term>8107B</term>
<term>8565</term>
<term>Dispositif point quantique</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The development of semiconductor quantum dot (QD) devices particularly for the infrared requires information on their intraband energy levels. For most of the samples FTIR spectroscopy does not provide reliable results on intraband transitions in the mid-infrared due to very low absorption signals. In recent years photocurrent spectroscopy was demonstrated as an alternative method. In this paper we present a modified photocurrent method, which does not require complicated contact structures or contact layers. The samples are laterally contacted by simply soldering wires and are biased by several 10 V. The intraband resonances are monitored via current changes induced by optical excitation with intense picosecond mid-infrared laser pulses. Both bound to bound and bound to continuum transitions enhance the current. We present data taken on two highly n-doped GaAs/InAs QD samples with different doping concentration at 77 K and at room temperature. In this way, a nearly complete picture of intraband transitions between excited levels in the conduction band is obtained. The intraband spectra obtained with this technique nicely agree with calculated QD intraband levels.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1386-9477</s0>
</fA01>
<fA03 i2="1">
<s0>Physica ( E) low-dimens. syst. nanostrut.</s0>
</fA03>
<fA05>
<s2>43</s2>
</fA05>
<fA06>
<s2>6</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Intraband spectroscopy of excited quantum dot levels by measuring photoinduced currents</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>EICHENBERG (B.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DOBMANN (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WUNDERLICH (H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SEILMEIER (A.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>VOROBJEV (L. E.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>FIRSOV (D. A.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>PANEVIN (V.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>TONKIKH (A. A.)</s1>
</fA11>
<fA14 i1="01">
<s1>Physikalisches Institut, Universität Bayreuth, Universitätsstrasse 30</s1>
<s2>95447 Bayreuth</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>St. Petersburg State Polytechnic University</s1>
<s2>195251 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>St. Petersburg Academic University of RAS</s1>
<s2>194021 St. Petersburg</s2>
<s3>RUS</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>1162-1165</s1>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145E</s2>
<s5>354000191508960040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>21 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0245273</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. E, low-dimentional systems and nanostructures</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The development of semiconductor quantum dot (QD) devices particularly for the infrared requires information on their intraband energy levels. For most of the samples FTIR spectroscopy does not provide reliable results on intraband transitions in the mid-infrared due to very low absorption signals. In recent years photocurrent spectroscopy was demonstrated as an alternative method. In this paper we present a modified photocurrent method, which does not require complicated contact structures or contact layers. The samples are laterally contacted by simply soldering wires and are biased by several 10 V. The intraband resonances are monitored via current changes induced by optical excitation with intense picosecond mid-infrared laser pulses. Both bound to bound and bound to continuum transitions enhance the current. We present data taken on two highly n-doped GaAs/InAs QD samples with different doping concentration at 77 K and at room temperature. In this way, a nearly complete picture of intraband transitions between excited levels in the conduction band is obtained. The intraband spectra obtained with this technique nicely agree with calculated QD intraband levels.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07T</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F18</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Point quantique semiconducteur</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Semiconductor quantum dots</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Niveau énergie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Energy levels</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Spectrométrie transformée Fourier</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Fourier transform spectroscopy</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Plan expérience</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Experimental design</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Transition intrabande</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Intraband transitions</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Courant photoélectrique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Photocurrents</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Photoconductivité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Photoconductivity</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Assemblage brasage tendre</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Soldered joints</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Résonance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Resonance</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Impulsion laser</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Laser pulse</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Impulsión láser</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Continuum</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Continuum</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Continuo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Addition azote</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Nitrogen additions</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>30</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>31</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Doping</s0>
<s5>33</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Doping</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Bande conduction</s0>
<s5>34</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Conduction bands</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107T</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8535B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8565</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Dispositif point quantique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Quantum dot device</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="25" i2="3" l="SPA">
<s0>Dispositivo punto cuántico</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>164</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Russie/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000075 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Russie/Analysis/biblio.hfd -nk 000075 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Russie
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:11-0245273
   |texte=   Intraband spectroscopy of excited quantum dot levels by measuring photoinduced currents
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024